
Chapter 4

Conditioning and Martingale

Aithus C. Mao on 12th March 2024

The martingale replace the process of completely independence with similar repetition.

4.1 Conditioning
Let X be a random variable on a probability space (E, E,P) with E|X| ≤ ∞.

Definition 4.1.1 (Conditional Expectation w.r.t. a σ-algebra). Let E′ be a sub-σ-algebra
w.r.t. E, the conditional expectation E[X|E′] is any random variable Y on E′ such that

for all A ∈ E′,
�

A
XdP =

�
A

Y dP.

Definition 4.1.2 (Conditional Expectation w.r.t. a Random Variable). Given two random
variables X and Y on (E, E,P), the conditional expectation E[X|Y ] is any random variable
Z on (E, σ(Y ),P) such that for all A ∈ σ(Y ),

�
A

XdP =
�

A
ZdP.

Lemma 4.1.1 (Uniqueness). All conditional expectations of one r.v. on a σ-algebra (or
on another r.v.) is a.s. equal.

Proof. We will only prove the case of conditioning on a σ-algebra, and the case of r.v. would
be straightforward. Let E′ be a sub-σ-algebra w.r.t. E, Y and Z be two r.v.s that are X

conditioning on E′.
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Let A := {x|Y (x) > Z(x)}. It can be easily verified that A is E′-measurable. Thus,�
A

Y dP =
�

A
ZdP, i.e.,

�
A

(Y − Z)dP = 0. As Y (x) > Z(x) for all x in A, we must have
that P(A) = 0. Similarly, we can also prove that P({x|Y (x) < Z(x)}) = 0. Consequently,
P({x|Y (x) ̸= Z(x)}) = 0, and this completes the proof.

Remark 4.1.1. As stated in math stackexchange: The existence of conditional expectation
is more difficult. The proofs I’ve seen either use the Radon-Nikodym theorem, or the Riesz
representation theorem in Hilbert space. Any measure-theoretic probability book will have
a proof.

Lemma 4.1.2. Two random variables are independent iff the σ-algebras generated by them
are independent.

Proof. C. Mao-TODO

4.2 Martingale
A martingale is a stochastic process where the previous r.v.s stacking on previous r.v.s by
adding details.

Definition 4.2.1 (Martingale). A real-valued stochastic process X = (Xt)t∈T is called a
martingale if X is adapted to a filtration F= (Ft)t∈T∗, Xt is finite integrable for all t ∈ T,
and

E[Xt − Xs|Fs] = 0

a.s. whenever s < t.

Definition 4.2.2 (Martingale Difference Sequence). A real-valued stochastic process X =
(Xt)t∈T is called a martingale difference sequence if X is adapted to a filtration F, each Xt

is finite integrable, and

E[Xt|Fs] = 0

a.s. whenever s < t.

∗ A filtration is an index σ-algebras that the former is sub-σ-algebras of the latter. Xt is Ft measurable
for all t ∈ T.
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4.3 Lemma

Given two random variables X, Y on Ewith σ(X) ⊆ σ(Y ), what would it be like if we apply
conditioning on σ(X) (i.e., X) to functions like f(X, Y )? f(X, Y ) shall be measurable w.r.t.
σ(Y ).

Lemma 4.3.1. If f(X, Y ) = XY , we shall have that, for all A ∈ σ(X),
�

A

E
�
XY |X

�
dP =

�

A

XE[Y |X]dP.

Proof. I shall only prove the case that both X and Y are simple functions on E, and the
extension to other integrable functions should be easy. Let R(X) and R(Y ) be the possible
values taken by X and Y . For any x ∈ R(X),

�

X−1(x)
E[XY |X]dP =

�

X−1(x)
xY dP = x

�

X−1(x)
Y dP

=x

�

X−1(x)
E[Y |X]dP

=
�

X−1(x)
xE[Y |X]dP.

Thus, for any A ∈ σ(X), by the disjoint property of X−1(x) for x ∈ R(X),
�

A

E[XY |X]dP =
�

x∈X(A)

�

X−1(x)
E[XY |X]dP

=
�

x∈X(A)

�

X−1(x)
xE[Y |X]dP

=
�

A

XE[Y |X]dP.

C. Mao-TODO: The proof would be much simpler if we use the uniqueness of the conditional
expectation.
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4.4 Azuma-Hoeffding (Azuma’s) Inequality
Theorem 4.4.1 (Azuma-Hoeffding Inequality). Suppose (Xt)t∈[N ] is a super-martingale
adapting to (Ft)t∈[N ] and†

|Xk − Xk−1| ≤ ck, (4.1)

almost surely for all k ∈ [1, N ]. Then for all positive integers N and all positive real ϵ,

P (XN − X0 ≥ ϵ) ≤ exp
� −ϵ2

2
�N

k=1 c2
k

�
.

proof sketch. We list the key components of the proof in the following.

• For any A ∈ E′ ⊆ E, X ∈ E′, Y ∈ E, and a measure µ on E,
�

A

f(X, Y )dµ =
�

A

E
�
f(X, Y )|E′�dµ.

We can take the whole set E as A.‡

• We can thus use the induction,

E
�

exp
�
λ

N�

k=1
[Xk − Xk−1]

��
=E

�
E

�
exp

�
λ

N�

k=1
[Xk − Xk−1]

���FN−1

��

=E
�

exp
�

λ
N−1�

k=1
[Xk − Xk−1]

�
· E

�
exp

�
λ[XN − XN−1]

���FN−1
��

.

(By Lemma 4.3.1)

By Eq. (4.1) and the definition of super-martingales, it holds almost surely that

E
�

exp
�
λ[Xk − Xk−1]

���FN−1
�

≤ exp
�c2

N λ2

8

�
.

We can do inductions on [2, N ] and get E
�

exp
�
λ

�N
k=1[Xk − Xk−1]

��
≤ exp

�
λ2

�
t

c2
t

8

�
.

We can apply the Chernoff bound and get the desired result.

† [N ] = {0, 1, 2 . . . N}, [M, N ] = {M . . . N}. The super-martingale requires that E[Xt − Xs|Fs] ≥ 0 a.s.
whenever t ≥ s.

‡ This is due to the definition of the conditioning.
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4.5 Fun Facts
Fact 1. For two σ-algebras E and E′ with E′ ⊆ E, we only have E′-measurable → E-
measurable. Yet E-measure implies E′-measure.
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