Chapter 4

Conditioning and Martingale

AITHUS C. MAO on 12th March 2024

The martingale replace the process of completely independence with similar repetition.

4.1 Conditioning

Let X be a random variable on a probability space $(E, \mathcal{E}, \mathbb{P})$ with $\mathbb{E}|X| \leq \infty$.

Definition 4.1.1 (Conditional Expectation w.r.t. a σ -algebra). Let \mathscr{C}' be a sub- σ -algebra w.r.t. \mathscr{C} , the conditional expectation $\mathbb{E}[X|\mathscr{C}']$ is any random variable Y on \mathscr{C}' such that

for all
$$A \in \mathscr{C}'$$
, $\int_A X d\mathbb{P} = \int_A Y d\mathbb{P}$.

Definition 4.1.2 (Conditional Expectation w.r.t. a Random Variable). Given two random variables X and Y on $(E, \mathcal{C}, \mathbb{P})$, the conditional expectation $\mathbb{E}[X|Y]$ is any random variable Z on $(E, \sigma(Y), \mathbb{P})$ such that for all $A \in \sigma(Y)$, $\int_A X d\mathbb{P} = \int_A Z d\mathbb{P}$.

Lemma 4.1.1 (Uniqueness). All conditional expectations of one r.v. on a σ -algebra (or on another r.v.) is a.s. equal.

Proof. We will only prove the case of conditioning on a σ -algebra, and the case of r.v. would be straightforward. Let \mathscr{C}' be a sub- σ -algebra w.r.t. \mathscr{C} , Y and Z be two r.v.s that are X conditioning on \mathscr{C}' .

Let $A := \{x | Y(x) > Z(x)\}$. It can be easily verified that A is \mathscr{C}' -measurable. Thus, $\int_A Y d\mathbb{P} = \int_A Z d\mathbb{P}$, i.e., $\int_A (Y - Z) d\mathbb{P} = 0$. As Y(x) > Z(x) for all x in A, we must have that $\mathbb{P}(A) = 0$. Similarly, we can also prove that $\mathbb{P}(\{x | Y(x) < Z(x)\}) = 0$. Consequently, $\mathbb{P}(\{x | Y(x) \neq Z(x)\}) = 0$, and this completes the proof. \Box

Remark 4.1.1. As stated in math stackexchange: The existence of conditional expectation is more difficult. The proofs I've seen either use the Radon-Nikodym theorem, or the Riesz representation theorem in Hilbert space. Any measure-theoretic probability book will have a proof.

Lemma 4.1.2. Two random variables are independent iff the σ -algebras generated by them are independent.

Proof. C. Mao-TODO

4.2 Martingale

A martingale is a stochastic process where the previous r.v.s stacking on previous r.v.s by adding details.

Definition 4.2.1 (Martingale). A real-valued stochastic process $X = (X_t)_{t \in \mathbb{T}}$ is called a martingale if X is adapted to a filtration $\mathcal{F} = (\mathcal{F}_t)_{t \in \mathbb{T}}^*$, X_t is finite integrable for all $t \in \mathbb{T}$, and

$$\mathbb{E}[X_t - X_s | \mathcal{F}_s] = 0$$

a.s. whenever s < t.

Definition 4.2.2 (Martingale Difference Sequence). A real-valued stochastic process $X = (X_t)_{t \in \mathbb{T}}$ is called a martingale difference sequence if X is adapted to a filtration \mathcal{F} , each X_t is finite integrable, and

$$\mathbb{E}[X_t|\mathcal{F}_s] = 0$$

a.s. whenever s < t.

^{*} A filtration is an index σ -algebras that the former is sub- σ -algebras of the latter. X_t is \mathcal{F}_t measurable for all $t \in \mathbb{T}$.

4.3 Lemma

Given two random variables X, Y on \mathscr{C} with $\sigma(X) \subseteq \sigma(Y)$, what would it be like if we apply conditioning on $\sigma(X)$ (i.e., X) to functions like f(X, Y)? f(X, Y) shall be measurable w.r.t. $\sigma(Y)$.

Lemma 4.3.1. If f(X,Y) = XY, we shall have that, for all $A \in \sigma(X)$,

$$\int_{A} \mathbb{E} \big[XY|X \big] d\mathbb{P} = \int_{A} X \mathbb{E} [Y|X] d\mathbb{P}.$$

Proof. I shall only prove the case that both X and Y are simple functions on E, and the extension to other integrable functions should be easy. Let R(X) and R(Y) be the possible values taken by X and Y. For any $x \in R(X)$,

$$\begin{split} \int_{X^{-1}(x)} \mathbb{E}[XY|X] d\mathbb{P} &= \int_{X^{-1}(x)} xY d\mathbb{P} = x \int_{X^{-1}(x)} Y d\mathbb{P} \\ &= x \int_{X^{-1}(x)} \mathbb{E}[Y|X] d\mathbb{P} \\ &= \int_{X^{-1}(x)} x \mathbb{E}[Y|X] d\mathbb{P}. \end{split}$$

Thus, for any $A \in \sigma(X)$, by the disjoint property of $X^{-1}(x)$ for $x \in R(X)$,

$$\begin{split} \int_{A} \mathbb{E}[XY|X] d\mathbb{P} &= \sum_{x \in X(A)} \int_{X^{-1}(x)} \mathbb{E}[XY|X] d\mathbb{P} \\ &= \sum_{x \in X(A)} \int_{X^{-1}(x)} x \mathbb{E}[Y|X] d\mathbb{P} \\ &= \int_{A} X \mathbb{E}[Y|X] d\mathbb{P}. \end{split}$$

C. Mao-TODO: The proof would be much simpler if we use the uniqueness of the conditional expectation. $\hfill \Box$

Azuma-Hoeffding (Azuma's) Inequality **4.4**

Theorem 4.4.1 (Azuma-Hoeffding Inequality). Suppose $(X_t)_{t \in [N]}$ is a super-martingale adapting to $(\mathcal{F}_t)_{t\in[N]}$ and[†]

$$|X_k - X_{k-1}| \le c_k, \tag{4.1}$$

almost surely for all $k \in [1, N]$. Then for all positive integers N and all positive real ϵ ,

$$P(X_N - X_0 \ge \epsilon) \le \exp\left(\frac{-\epsilon^2}{2\sum_{k=1}^N c_k^2}\right).$$

proof sketch. We list the key components of the proof in the following.

• For any $A \in \mathscr{C}' \subseteq \mathscr{C}, X \in \mathscr{C}', Y \in \mathscr{C}$, and a measure μ on \mathscr{C} ,

$$\int_{A} f(X,Y) d\mu = \int_{A} \mathbb{E} \big[f(X,Y) | \mathcal{E}' \big] d\mu.$$

We can take the whole set E as A.[‡]

• We can thus use the induction,

$$\mathbb{E}\Big[\exp\left(\lambda\sum_{k=1}^{N}[X_{k}-X_{k-1}]\right)\Big] = \mathbb{E}\Big[\mathbb{E}\Big[\exp\left(\lambda\sum_{k=1}^{N}[X_{k}-X_{k-1}]\right)|\mathcal{F}_{N-1}\Big]\Big]$$
$$= \mathbb{E}\Big[\exp\left(\lambda\sum_{k=1}^{N-1}[X_{k}-X_{k-1}]\right) \cdot \mathbb{E}\Big[\exp\left(\lambda[X_{N}-X_{N-1}]\right)|\mathcal{F}_{N-1}\Big]\Big]$$
(By Lemma 4.3.1)

By Eq. (4.1) and the definition of super-martingales, it holds almost surely that

$$\mathbb{E}\Big[\exp\left(\lambda[X_k - X_{k-1}]\right)\Big|\mathcal{F}_{N-1}\Big] \le \exp\left(\frac{c_N^2\lambda^2}{8}\right)$$

We can do inductions on [2, N] and get $\mathbb{E}\left[\exp\left(\lambda \sum_{k=1}^{N} [X_k - X_{k-1}]\right)\right] \le \exp\left(\frac{\lambda^2 \sum_t c_t^2}{8}\right).$ We can apply the Chernoff bound and get the desired result.

 $[[]N] = \{0, 1, 2 \dots N\}, \ [M, N] = \{M \dots N\}. \text{ The super-martingale requires that } \mathbb{E}[X_t - X_s | \mathcal{F}_s] \geq 0 \text{ a.s.}$ t whenever $t \geq s$. ‡

This is due to the definition of the conditioning.

4.5 Fun Facts

Fact 1. For two σ -algebras \mathscr{C} and \mathscr{C}' with $\mathscr{C}' \subseteq \mathscr{C}$, we only have \mathscr{C}' -measurable $\rightarrow \mathscr{C}$ -measurable. Yet \mathscr{C} -measure implies \mathscr{C}' -measure.