Chapter 4
Conditioning and Martingale
Aithus C. Mao on 12th March 2024
The martingale replace the process of completely independence with similar repetition.
4.1 Conditioning
Let X be a random variable on a probability space (E,
E
, P) with E|X| .
Denition 4.1.1 (Conditional Expectation w.r.t. a σ-algebra). Let
E
be a sub-σ-algebra
w.r.t.
E
, the conditional expectation E[X|
E
] is any random variable Y on
E
such that
for all A
E
,
A
XdP =
A
Y dP.
Denition 4.1.2 (Conditional Expectation w.r.t. a Random Variable). Given two random
variables X and Y on (E,
E
, P), the conditional expectation E[X|Y ] is any random variable
Z on (E, σ(Y ), P) such that for all A σ(Y ),
A
XdP =
A
ZdP.
Lemma 4.1.1 (Uniqueness). All conditional expectations of one r.v. on a σ-algebra (or
on another r.v.) is a.s. equal.
Proof. We will only prove the case of conditioning on a σ-algebra, and the case of r.v. would
be straightforward. Let
E
be a sub-σ-algebra w.r.t.
E
, Y and Z be two r.v.s that are X
conditioning on
E
.
11
12 Martingale
Let A
:
= {x|Y (x) > Z(x)}. It can be easily veried that A is
E
-measurable. Thus,
A
Y dP =
A
ZdP, i.e.,
A
(Y Z)dP = 0. As Y (x) > Z(x) for all x in A, we must have
that P(A) = 0. Similarly, we can also prove that P({x|Y (x) < Z(x)}) = 0. Consequently,
P({x|Y (x) = Z(x)}) = 0, and this completes the proof.
Remark 4.1.1. As stated in math stackexchange: The existence of conditional expectation
is more dicult. The proofs I’ve seen either use the Radon-Nikodym theorem, or the Riesz
representation theorem in Hilbert space. Any measure-theoretic probability book will have
a proof.
Lemma 4.1.2. Two random variables are independent i the σ-algebras generated by them
are independent.
Proof. C. Mao-TODO
4.2 Martingale
A martingale is a stochastic process where the previous r.v.s stacking on previous r.v.s by
adding details.
Denition 4.2.1 (Martingale). A real-valued stochastic process X = (X
t
)
tT
is called a
martingale if X is adapted to a ltration
F
= (
F
t
)
tT
, X
t
is nite integrable for all t T,
and
E[X
t
X
s
|
F
s
] = 0
a.s. whenever s < t.
Denition 4.2.2 (Martingale Dierence Sequence). A real-valued stochastic process X =
(X
t
)
tT
is called a martingale dierence sequence if X is adapted to a ltration
F
, each X
t
is nite integrable, and
E[X
t
|
F
s
] = 0
a.s. whenever s < t.
A ltration is an index σ-algebras that the former is sub-σ-algebras of the latter. X
t
is
F
t
measurable
for all t T.
Lemma 13
4.3 Lemma
Given two random variables X, Y on
E
with σ(X) σ(Y ), what would it be like if we apply
conditioning on σ(X) (i.e., X) to functions like f (X, Y )? f(X, Y ) shall be measurable w.r.t.
σ(Y ).
Lemma 4.3.1. If f(X, Y ) = XY , we shall have that, for all A σ(X),
A
E
XY |X
dP =
A
XE[Y |X]dP.
Proof. I shall only prove the case that both X and Y are simple functions on E, and the
extension to other integrable functions should be easy. Let R(X) and R(Y ) be the possible
values taken by X and Y . For any x R (X),
X
1
(x)
E[XY |X]dP =
X
1
(x)
xY dP = x
X
1
(x)
Y dP
=x
X
1
(x)
E[Y |X]dP
=
X
1
(x)
xE[Y |X]dP.
Thus, for any A σ(X), by the disjoint property of X
1
(x) for x R(X),
A
E[XY |X]dP =
xX(A)
X
1
(x)
E[XY |X]dP
=
xX(A)
X
1
(x)
xE[Y |X]dP
=
A
XE[Y |X]dP.
C. Mao-TODO: The proof would be much simpler if we use the uniqueness of the conditional
expectation.
14 Azuma-Hoeding (Azuma’s) Inequality
4.4 Azuma-Hoeding (Azuma’s) Inequality
Theorem 4.4.1 (Azuma-Hoeding Inequality). Suppose (X
t
)
t[N ]
is a super-martingale
adapting to (
F
t
)
t[N ]
and
|X
k
X
k1
| c
k
, (4.1)
almost surely for all k [1, N ]. Then for all positive integers N and all positive real ϵ,
P (X
N
X
0
ϵ) exp
ϵ
2
2
N
k=1
c
2
k
.
proof sketch. We list the key components of the proof in the following.
For any A
E
E
, X
E
, Y
E
, and a measure µ on
E
,
A
f(X, Y ) =
A
E
f(X, Y )|
E
dµ.
We can take the whole set E as A.
We can thus use the induction,
E
exp
λ
N
k=1
[X
k
X
k1
]
=E
E
exp
λ
N
k=1
[X
k
X
k1
]
F
N 1

=E
exp
λ
N 1
k=1
[X
k
X
k1
]
· E
exp
λ[X
N
X
N 1
]
F
N 1
.
(By Lemma 4.3.1)
By Eq. (4.1) and the denition of super-martingales, it holds almost surely that
E
exp
λ[X
k
X
k1
]
F
N 1
exp
c
2
N
λ
2
8
.
We can do inductions on [2, N ] and get E
exp
λ
N
k=1
[X
k
X
k1
]
exp
λ
2
t
c
2
t
8
.
We can apply the Cherno bound and get the desired result.
[N ] = {0, 1, 2 . . . N}, [M, N] = {M . . . N }. The super-martingale requires that E[X
t
X
s
|
F
s
] 0 a.s.
whenever t s.
This is due to the denition of the conditioning.
̱4Lb]PI=B↏.5U"{|{6?LȄjXO4OcV?ء+g"O8xӦZhڛj2%V{,,,B,l_뿼AxA}AUEKtEaBH7qqWQG8urA1AQxJ9CC! CfZ X"'諼+A~St4UD|sX/d}YS`C/xn1]eLr3$;\.-q|膿uw`TA}P`OE%eSV2O%g?wbHmFR:b!»UD`rRuL i4In}ӬlM#hN Ӯʢ@(2GeU| 0v&땾uUqh{E~Y,1g{,z=\$1V%J.[3da*>,%d_\/~U$^/Etf${c] p3bۈNl7J8! 3Cub2QBZQU5%; qіO+N]X XˣMǶckJPa: fЂU[9\o!kEzRrzvnH>V03OZo^ v@6QA/9?4FB#6=V%mGz|0,NUQ6UgWM,. 낻Y.4Y2WNs\Q}W`Ժq9WV^#q91ׯ_Ƅx % "pJ(<*U &8*@Pt1FZfE.nt֩clW%`pǁjb​\Iw 0EX/-K~^6FA!].n0K/Yd"ȇYp^y ?O"8O>Řͱs<`p4 ScAtܯVvH=V22΅\x%]=Ll ^?)MX%ޘppC_$1?d$0V\Xd{ $P3cVOhtz±嚓tR~ 4'{)^)Q 4H#>KpŝUjPKc[-qKTfG#:HZq RYuAo?XX!QN^/G~]J}%5S zd!41s:Yuor+9)+k]Mkeq >qȮ^L=kJK= %O;)p0[n(9>cœ;0f zW1coEr}y "K5@O,Nk9NϋdqC$c-!߀UQo2G7/joVV7T;[6M TeL]0)e W$*GT]>5gF4}8_ڋ;cζX'NT_$GGbCTz띔1hN6t\)#RC{NHiҍޖַC37'x/^JOq\?!{l C)L>cvM"?Y)uڢR:Q=CUsk42Pjf]֌1JT.4^[X!07~  dO]7tI Hz*8rl*r;ڔn1;l[=.bAWI -/ʋ=vs| 7@K+8_&GhHd~5᪂,bn?6=(DNJNѯJ_r8< Vqug+=)z>72\)(20fWq,gj͆žxVE <3KQ򊢎1>T<3je h9.ǍIG9L@m7/^"m`bm {x#rU8^bPm'1ͯ]"~5ٝsIaMZTxo԰Ĵ􎝭ƁXgE0]~e 7pcyV#Sc[1<&Ƕ`7H]wmGVY?I+,g:Ej? p{sQ!{$℡zG]OM,BZs.§Ds ځKT0`TAh)B`ɇr]Gu}*3}M?kO[<ʣЎ#]'EF$Y'+'ˈ-<#Uk ڙsqC6s#8qoJVqdPSsMѽHOz\.եO ĄQҪ&\f#u oKl7~=5Ʌ$!X,5=aw7[gpiU6=.JdܧE1_WLv+},:$w;D?7l5S3B jߨI˿m+V&$KNLGL.޲e1nŢ ڇwDAeC4o|z fjq,PeaeuZ6^2c`]TK //">E LZX_,?*0sQoc3!KC/RpliLϚg=${R>3ᇖcz :\4O8mSwNMƻO6}&|M=\ ֟*xG `o? :me&!rlf2qo>7 mZ#>1KPlP\׸yלca7LSkbtV"l0˖v[!ǐvff^"8sR"Q*H)^ɼ/X^g νBP-VZ_!Y(й- 05#(o |LQ$@TZC$:3's{X]}FQ>bV[`_+,v$bLL}p <8kݭ>H1Bg,Iz#d<r9I)aø !eq?! m?ܡ J2̩9_9/pH+ndNO qP LjvD5 αvhNL GݠÉ#|@V&/@!WG"1hy 3+bZ ^pWevn|ёp Y6x,?J)4HBĢbJ\7'|]I@񓕜޻BUH7q~AY Qt`rU%KX2BF1@%j*l=c۲#N s0ҿA yUNKh@wB  v 3hKv J{m=LE#i0{s(>hܶ(/Dž#,ڨp62F$v 1p#J5+}]qꏒU;cyJ\wTe8?["(#>MiPYAK3qa@aWYY[eczAyICLDtU|PPu7LAo^cL GæIȠ&k|lg_I*S ZyOYih)HǢr{j|k ׈p]0e: (/y7bYSarj7YaK(k`ZU&yi֧l\k[LfZӗ f`qOc^Cag۠oGs}`+ 6xL[p6`f;h}|m>_ϡJkk۵*V %p%)j/= l䙺ME> T -CZh>rןG{0;C$KwsT^^ES ֒sсf}W؞ 4AG[JkpcX⷟F{b<}7~)4y!lFؕ+&HmK܆ug M2|D[>A.O9 8mDGapxfl^7jXKKðy3q&2Azc< @3ج~`OT%` i4t oԝ,\}ri\7I\΄R`"jz+`BNd~ώu^j" fdQ! %5?cYG=dA 13,ԍbNMk\m1Ϳe.p7"V(ƖD l5?%2b}+nXNK^qu_꯲MpDQ[\tWi9 Y#>>pi\_& ߾jC[xIqGGuq$bO( ywӥyV5JE*"856>yauLKr!Kos~jQhk^p>{POu4hhHfoSh}\HVۥ ,ڊ3K$_U@N`32ABZQJ o7P0aJZ:$ThMhY׿htVB#!~)]g]$"-u8rۡ 'nseZ [f(~,  _4&KcXO@)i\{SՌRшaYq[`np?!@xi$ hPL"2tI\ #΁q]kRVIwɯAX@MfKBV7%9j#oY]Ǒ3N؟(5Jv>pq"}?TM KG胺Tx M4&zڸl\wjŧˆvBd<zR>SVgSJ.(ZVU:!&i9)a+A74T @dQ7gS Fx¦<د1=p g7oR~RVh)/n0rvp9 c[Gw*-/8:g C-l*Ci=^$&17g:P G͘)DBpd-y`eq]NbTRGe#*sE f5[d{w߅)0̥!)P.k|ܾ( vGÍ$.OE4Щ-<"8<Ȼ}]؛2{ W&L&2..NSn}{>+A{Pd5Dni{cl2OC&h_M 82,vR as0TϲC7Z$:quHq:ߤ YNa'kNiE_ YfmU؃h ?OnJ>)㋸S)!jy9c ׭.L*̂dЙnp8"G媠I y0`@Z#(&|+"8?a~_?mVŭ4̦tfjbعPM5$J<1,R`4{PY׬kk[^EBMrїNbs؜~YQCadP+G4fLrc>rKԖIuLqx|/?,Ȣ^ ZWˠP :6./]@E"na]U@ǖc FxsP  CyT_"3Jld7dnU^ wD~JW C:d :?$Ms:.MmD~Ћj"aA&b:DnRܠ< vCŖ= b1xGnu] 9y i3ucFH8݊W^2?QbسReL"2j$Z vmک;v$&wRO9I5[JCYzXGS̑%LV#hύiOjF&v dYF`02'+TxH[{r9Q}H&ĜTETyRy /Y˸%$kȖb[Zv=:w1ֿ~GP ֱF}C҄'<`̑0y(l™{M|А Á0/7`Y'"y̐N1{r=. m6{VJ4*nex䑾U෵Cxߋy1"5y9E{ZV+[ˊV=6Cv:M"oh:1$,t&=1nP 6ۻHe@6q-U|:x{ӈҊ C1*.dRYm3gQt hsܔYQSJ*_ >&4| 4o7K?{Izt4I^ly)"?<g[IOlºX˲DÖF,+}WP GCDt,lT>ڒlޜ @Bqf[-WvW)uV2&:F*ްɅ14Z=;a\}Vvc/-)d8:;0㛸R1-uM:9T돻|x1ECS15W>5G[[emZtHp>~\3&z9x'Q%MhYd^{5)?*t&K$L( w1xG-",̺/r$TMOE&( 4I&akO]^g_K2t}ӭ,:td}/Э bMx>VY)ZxӞü"Yds/ln>c|eh ~:bHHRϱ%n;k$jCq?i>>m{ܒ^ @5Wv099#5.Jb/wg[Du)8#$} }%ܳS'+.|CJ,,O&'}wQAkPDBQC+~QSH4DRTԾnILwHGS@؃+nQ]HⓏ;rATiwEMBQr}^UIKEدA[J{(]S#5$""~}]XM'QnDG@rRLXl\И̗_7>C=hr^WOl4Цh ـh߭7'+\HKy47'#nQ]M=Sݮ~]@bBT?M~q7TWir>XHa^*b3gZYJ ?_rBR|bhXKTflLW%5 .{RU.mZI]HiD߁Пv`s\wW98᥁3ϳBi/p ~e [Z(*.)93sbAXb?]Cȅ bXZ]p&;~RALFnPOB\~hZI.zLjWვ>* +ˆMWĊV>7vzX`lʸâd'vK'J=F.1Ii 2?R;Kvԁ.Q}jzW~PETB]py?aklY?P?JiFj 1q;fgm{SX j7ħ}Wϙ;UO 5Ik}7k^g ]ˇ]d*= e[q{u%lpӱ,>m#̹̿,_v%W _f1[l3u&0:q=V`{tP -}M/ĥ3zϜa8#(/ii(㫩ç˙qϾe'41J%F0e5 ,*:>3 kz~qRV'NrPTLeLoB isԻ~G]Z N'7.JyF=#$rH2~]QMDvM.Įb]V\'+m-NXI0\{W叔?8bSRV n'gOE*BAv 4EH`͚xVODjIas7!^)Ig# <6Xg[DS{^}X`$f+L^}>ƭ v`bȤ .Sju/F<95cͲrDOPMArWO:\L'ݧGQaM\mV`..rm?\wy7^HǙ۳J epc>6!b-]˝&TxeEZ9%?5ja^lYYkZo sTuV> 9V#F!,Y .fIb;`^k[<3i;b?XAWLJS9*3o#v;{KӛnjvXJR bat[2qq]}u\660LSAfz+ZȰ]yj5<`1AjzR⣔N"U# .nvYKih]/~&}g؊L;V Wwt&mmT׫D#DMxUN=0p4p#gHi3dYJ8@ftv~|{Q2>Z%C\F/(0-* ".*غn^AIMOյPȍ7NYEm`-~tS_J':XK[u ޘsǭ`XԋTH6ą"P,hKCD+bzBXȏKY+JpbO؀\n݇ӊl;3 b6VDP)a1xS 4xNвmǛL13({ny ݰE1R4f1S V61L$NH#(r TEcC&q?b={RWΊ n6nD\0%n2"khߕ)2QsscXeGӉ,f2zBjq"jfyQEƄz4߹)v52\ 6~#^LLoSTyS =RL3q.wVmz=꣨ 4V^>N$3)S0e1#.+btP؍+|MILSxREjвmXċ`nǕ#Y(yZ 5^_?J3vrĘAA ZQO@Q:PBF_;/8cq2O:Ֆźc3Ql>T zϠeP["n55sBQRѿA,rd,@ ¶vG˾ $euUN,}9" 3XKd_i71YQ? b7[Vd *v. y9ohӂn0 );0Z$x}|PAMšխtVBU*-6fv>geS/J;.koUX21&!b~9Qkn䋺^R(!U.uV:4wnzkuI4zd{%<.6OB.H 8r+j@kGȃڝ&XDU[Sv,/rO.R-Ld~i=>%j?_&⋻B5!z-qh)wƷ/mLÕ%Dq gA$p:xL h߮j5 j 8?l2NʟYq7gzT X~׶oψ': b nU25jF W4[ОmugW _2KS p=&h{w՗ߔ A3lzZ8#?a ,gצg^ߑ87l]0?"y?.|bmi7_̉'YKOC,`rw֗_I&\DNʣ;bWҕ^0Kc1ze7D=n j2[V9%#$>m\淢Oߝ-2T|UF W7^R eǢEқMp2B$Q u]o_4%]B7DwWϐO8#ƹ $@Ci/a{'{d_](f9K{ڬp9 hߴ4OK;8`_ Iw״м0e* /-i sycJP%3>KF_-4{wAAAOEHAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/FwAAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAACEHwAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAAwg8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAACA8AMAAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAQPgBAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAACD8AAAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAACEHwAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAAwg8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAACA8AMAAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAQPgBAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAACEHwAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAACD8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAACA8AMAAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAQPgBAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAAAQfgAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAACD8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAACA8AMAAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAAOEHAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAAAQfgAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAACD8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAAAAwg8AAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAAOEHAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAACD8AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAAAQfgAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAACD8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAAAAwg8AAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAAOEHAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4uAAAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAACEHwAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAABB+AAAACD8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAACA8AMAAED4AQAAIPwAAAAQfgAAAAg/AAAAhB8AAADCDwAAQPgBAAAg/AAAABB+AAAACD8AAACEHwAAAMIPAAAA4QcAAIDwAwAAEH4AAAAIPwAAAIQfAAAAwg8AAADhBwAAgPADAABA+AEAAAg/AAAAhB8AAADCDwAAAOEHAACA8AMAAED4AQAAIPwAAACEHwAAAMIPAAAA4QcAAIDwAwAAQPgBAAAg/AAAAGNSawkAAACLSURBVBB+AAAACD8AAADhBwAAgPADAABA+AEAACD8AAAAEH4AAAAIPwAAAIQfAACA8AMAAED4AQAAAAAAwF8djA6rGoZhmFcP1bp6rT6qu2pXXVTb6qXaVI/VfXVTPVWz6rQ6q86r6+q5uqq+qn01rZbV8XeNq6OTeq8m1ap6qz6ry2pR3f7u+s9+AIil5mvyHSNaAAAAAElFTkSuQmCC"/>
16 Fun Facts